Dieses Dokuwiki verwendet ein von Anymorphic Webdesign erstelltes Thema.

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
mpproposals2019 [2019/12/04 20:45]
oudet [MSCI]
mpproposals2019 [2019/12/11 23:35] (current)
etore [DS]
Line 1: Line 1:
 ====== 2019-2020 - Master Thesis Proposals ====== ====== 2019-2020 - Master Thesis Proposals ======
 +
 +Download here the slides of the internship rules presentation,​ year 2019/2020: {{ :​timetables:​msiam_mscinfomeeting2019-12.pdf |}}
 +
  
 [R] stands for research, [I] for industry, and [I,R] for both.\\ [R] stands for research, [I] for industry, and [I,R] for both.\\
Line 43: Line 46:
   * INRIA {{:​proj2019:​mscthesis2020_Metivet_knot.pdf |Numerical modelling of tight knots }} [R| MSCI]   * INRIA {{:​proj2019:​mscthesis2020_Metivet_knot.pdf |Numerical modelling of tight knots }} [R| MSCI]
   * IRIMAS Alsace {{:​proj2019:​mscthesis2020_Leida_TDM.pdf | Quantitative phase imaging using structured illumination}} [I| MSCI]   * IRIMAS Alsace {{:​proj2019:​mscthesis2020_Leida_TDM.pdf | Quantitative phase imaging using structured illumination}} [I| MSCI]
 +  * LJK {{:​proj2019:​mscthesis2020_Brigitte_controlers.pdf | Event and Self Triggered Stabilizing Controllers for Linear Switched Systems ​ }} [R| MSCI]
 +  *  INRIA Grenoble {{:​proj2019:​mscthesis2020_Steep_auto.pdf | Représentation automatique de diagrammes de Sankey}} [R| MSCI]
 +  * INRIA Grenoble {{:​proj2019:​mscthesis2020_Steep_flous.pdf | Réconciliation d'​intervalles flous}} [R| MSCI]
 +  *  INRIA Grenoble {{:​proj2019:​mscthesis2020_Steep_contraintes.pdf | Détection et résolution de conflits de contraintes linéaires}} [R| MSCI]
  
 ===== DS===== ===== DS=====
Line 73: Line 80:
   * {{ :​proj2019:​mscthesis2020-chorus.docx |CHORUS, Grenoble, Machine learning for coastal marine traffic}} [R| DS]   * {{ :​proj2019:​mscthesis2020-chorus.docx |CHORUS, Grenoble, Machine learning for coastal marine traffic}} [R| DS]
   * {{ :​proj2019:​mscthesis2020-lidar.pdf |MISTIS, Inria Grenoble and AMAP, Montpellier,​ Unsupervised probabilistic learning of leaf area density from UAV-lidar data}} [R| DS]   * {{ :​proj2019:​mscthesis2020-lidar.pdf |MISTIS, Inria Grenoble and AMAP, Montpellier,​ Unsupervised probabilistic learning of leaf area density from UAV-lidar data}} [R| DS]
 +  * {{ :​proj2019:​mscthesis2020-co_clustering.pdf |CEA, Saclay, Machine learning and co-clustering}} [R| DS]
 +  * {{ https://​team.inria.fr/​perception/​face-alignment-for-audio-visual-speech-enhancement/​ |Perception,​ INRIA Grenoble, Face alignment for audio-visual speech enhancement}} [R| DS] 
 +  * {{ https://​team.inria.fr/​perception/​master-internship-on-deep-bayesian-filtering/​ |Perception,​ INRIA Grenoble, Deep Bayesian filtering}} [R| DS]
 +  * {{ https://​team.inria.fr/​perception/​master-internship-on-audio-visual-speech-separation-using-variational-auto-encoders/​ |Perception,​ INRIA Grenoble,​Audio-visual speech separation using variational auto-encoders }} [R| DS]
 +  * {{ https://​team.inria.fr/​perception/​master-internship-on-deep-speaker-recognition/​ |Perception,​ INRIA Grenoble, Deep Speaker Recognition }} [R| DS]
 +  * {{ :​proj2019:​mscthesis2020-benchmarking_mrbayes.pdf |Hawai Tech, Grenoble, Bayesian models for phylogenetics}} [I| DS]
 +  * {{ :​proj2019:​mscthesis2020-cooperl.pdf |INRA, Rennes, Optimization of pork feeding}} [I,R| DS]
 +  * {{ :​proj2019:​mscthesis2020-brain_inria.pdf |MISTIS, INRIA Grenoble, Learning techniques for MRI safety and brain implants }} [R| DS, MSCI]
 +  * {{ :​proj2019:​mscthesis2020-cristal.pdf |LJK, Grenoble, Stochastic modelling in thermal effect in a cristal }} [R| DS, MSCI]
 +  * {{ :​proj2019:​mscthesis2020-nantes.pdf |UMANIT, Nantes, Signal segmentation in walking cycle }} [R| DS, MSCI]
mpproposals2019.1575488759.txt.gz · Last modified: 2019/12/04 20:45 by oudet
Dieses Dokuwiki verwendet ein von Anymorphic Webdesign erstelltes Thema.
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0