Year Schedule

The fall semester from September to January is designed to confront student with high level specialized topics. The topics are carefully selected to ensure that the students will prepare to industrial or academic careers where applied mathematics are central. The program is composed of informal tracks:

  • Modeling Scientific Computing, Imaging
  • Data Science

Students can create their own track by selecting the courses they wish to explore.

For a complete list of available courses, visit Courses.


The second semester is dedicated to the Master thesis/Internship in a research group or in industry.

For a sample list of past internship and master thesis, visit Thesis.


Download the academic calendar 2023-2024

MSCI

Modelling, Scientific Computing, Imaging, Geometry, CAD have been for decades at center of many innovations in many areas: design and development in industry such as transports, manufacturing (any innovative object is concerned by MSCI and CAD), Medical / Pharmaceutical (modelling of systems [CT scanner, MRI, hybrid imaging, robots, etc.], life and biomedical modelling), Chemical (modelling and simulation of reactions), Environment, Big Data (data and image modelling and analysis) …

The purpose of the MSCI track is to train both high-level researchers and engineers in Modelling, Scientific Computing, Imaging, by providing theoretical foundations and applied methodology. The theoretical courses ( 144h to 180h ) may be completed by more in-depth study of some courses and associated projects or projects from the Industry (see Modelling Seminar and Projects). They are followed by an internship in a research lab or company. This track is preparing students both for research in applied maths and also for high level applications of mathematics, modelling and computing in wide areas in the industry.

Data Science

The burst of data collection at unprecedented speed and scale in many fields, from biology to astrophysics, demands a paradigm shift in applied mathematics and computer science in order to face the new challenges in scientific modelling and computation.

To harness the power of this data revolution, the world needs academic researchers and professionals called “data scientists” skilled in designing and utilizing automated methods of analyzing it. The Data Science track in the MSIAM master aims at establishing the country’s leading Data Science academic training. Data science is becoming essential to answer some of the big scientific questions and technological challenges of our times: How can we prevent cancer and find better cures for diseases? How does the brain work? How can we design an artificial intelligence?

Data science lies at the crossroad of mathematics (pure and applied), statistics, computer science and an increasingly large number of application domains.

The University of Grenoble Alpes benefits from a very active community in data science, whose most visible banner is the Grenoble Data Science Institute. Among its permanent groups and recurrent activities are the Grenoble Data Club and R-in-Grenoble seminars.

The Data Science track has common courses with the MoSIG program. The Data Science track is both research- and industry-oriented. Its purpose is to train high-level researchers with skills in both the mathematical aspects of Data Science and in practical skills in data analysis and programming.

The theoretical courses (~180h) are followed by an internship in a research lab or company.

Some courses in DS focus on the methods and mathematical results on which rely the main approaches in machine learning, optimization and data science. They are oriented towards acquiring knowledge in machine learning, probabilistic and statistical modelling and optimization.

Some others focus on large-scale (often meaning high-dimensional) aspects of data science. They are dedicated to large-scale databases, optimization and machine learning. Some of them focus on some given applications, such as biology, information retrieval in multimedia databases or object recognition in images (typically, using deep learning approaches).

Grading and rules

The grading of each course may evolve every year. The details rules for 2023-24 are available (in french) for the year 2023-2024 .

The general rules of the Master program are available (in french) for the year 2023-2024 .